An exploration of diversified user strategies for image retrieval with relevance feedback
نویسندگان
چکیده
Given the difficulty of setting up large-scale experiments with real users, the comparison of content-based image retrieval methods using relevance feedback usually relies on the emulation of the user, following a single, well-prescribed strategy. Since the behavior of real users cannot be expected to comply to strict specifications, it is very important to evaluate the sensitiveness of the retrieval results to likely variations of users’ behavior. It is also important to find out whether some strategies help the system to perform consistently better, so as to promote their use. Two selection algorithms for relevance feedback based on support vector machines are compared here. In these experiments, the user is emulated according to eight significantly different strategies on four ground truth databases of different complexity. It is first found that the ranking of the two algorithms does not depend much on the selected strategy. Also, the ranking of the strategies appears to be relatively independent of the complexity of the ground truth databases, which allows to identify desirable characteristics in the behavior of the user.
منابع مشابه
Document Image Retrieval Based on Keyword Spotting Using Relevance Feedback
Keyword Spotting is a well-known method in document image retrieval. In this method, Search in document images is based on query word image. In this Paper, an approach for document image retrieval based on keyword spotting has been proposed. In proposed method, a framework using relevance feedback is presented. Relevance feedback, an interactive and efficient method is used in this paper to imp...
متن کاملبازیابی تعاملی تصاویر طبیعت با بهره گیری از یادگیری چند نمونه ای
Content-based image retrieval (CBIR) has received considerable research interest in the recent years. The basic problem in CBIR is the semantic gap between the high-level image semantics and the low-level image features. Region-based image retrieval and learning from user interaction through relevance feedback are two main approaches to solving this problem. Recently, the research in integra...
متن کاملSemiautomatic Image Retrieval Using the High Level Semantic Labels
Content-based image retrieval and text-based image retrieval are two fundamental approaches in the field of image retrieval. The challenges related to each of these approaches, guide the researchers to use combining approaches and semi-automatic retrieval using the user interaction in the retrieval cycle. Hence, in this paper, an image retrieval system is introduced that provided two kind of qu...
متن کاملUser-driven Nearest Neighbour Exploration of Image Archives
Learning what a specific user is exactly looking for, during a session of image search and retrieval, is a problem that has been mainly approached with “classification” or “exploration” techniques. Classification techniques follow the assumption that the images in the archive are statically subdivided into classes. Exploration approaches, on the other hand, are more focused on following the var...
متن کاملRelevance Feedback Models for Content-Based Image Retrieval
We investigate models for content-based image retrieval with relevance feedback, in particular focusing on the exploration-exploitation dilemma. We propose quantitative models for the user behavior and investigate implications of these models. Three search algorithms for efficient searches based on the user models are proposed and evaluated. In the first model a user queries a database for the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Vis. Lang. Comput.
دوره 19 شماره
صفحات -
تاریخ انتشار 2008